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1. SCIENTIFIC OVERVIEW

My research focuses on the study several analogues of classical analytic number theoretical
problems in the context of function fields over a large finite field.

There are remarkable similarities between the ring of integers Z and the polynomial ring
Fq[t] over the finite field Fq. In at least one respect, it is surprising that these rings resemble one
another, as the characteristic of Z is zero, whereas that of Fq[t] is positive. A significant neces-
sity in translating results from Z to Fq[t], therefore, is the derivation of methods independent of
the characteristic.

This observation lead in recent years to flourishing research on number theory in func-
tion fields, with many astonishing achievements. For instance, Katz-Sarnak’s [29] result on
equidistribution of Frobenius conjugacy classes, Keating-Rudnick’s calculation of the variance
of primes in short intervals (Hooley’s conjecture) and in arithmetic progressions (Goldston-
Montgomery’s conjecture) in [30], and the works of Liu and Wooley on the Waring problem
[37, 38]. Several more works are those of Entin [18] on the Bateman-Horn conjecture, Rodgers
[46, 45] on almost primes and on arithmetic functions, Bender and Pollack [12, 13] on the
quantitative polynomial Goldbach’s problem, and the Hardy-Littlewood (HL) prime polyno-
mial n-tuple problem which was resolved by Bary-Soroker in [10] in odd characteristic and by
Carmon in [15].

These problems in analytic number theory that were addressed in the context of function
fields require completely different methods than those of traditional analytic number theory.
Their resolutions in the function field setting is encouraging, as most experts consider some of
these problems intractable in the classical setting.

One similarity between Z and Fq[t] that I study is the density of the prime elements in the
mentioned rings in short intervals. When considering the prime elements as the building blocks
of Z or Fq[t], there is no apparent reason why the ”same” density of primes should hold in
both rings. However, the Prime Number Theorem (PNT) and its function field analogue, the
Prime Polynomial Theorem (PPT) state that the density of prime integers up to a large x and
the density of prime polynomials of a given degree are the same if formulated in the correct
language.

In [7], we used a new approach in solving the question of primes polynomials in short inter-
vals and in arithmetic progressions with large modulus, both still open questions in the setting
of integers. This approach involves computations of Galois groups as well as using explicit
Chebotarev density theorems. The new approach enables us to calculate asymptotic formulas
that go much further than what the Riemann Hypothesis implies.

Recalling that the ring Fq[t] can be viewed as the ring of rational functions on P1, regular
away from infinity, one may further wonder whether the density of primes remains the same
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when considering primes in a ring of rational functions of any smooth projective curve C de-
fined over a finite field Fq, regular away from some divisor E on C. In [8], we extend the defi-
nition of a short interval to any curve C as above, and show that indeed the expected density of
primes still holds. The extension of the definition of a short interval, as well as the computation
of the density of primes, required an algebro-geometric point of view. Detailed descriptions of
these two results are briefly described in Sections 2.2 and 2.3, and fully described in Section 3.1
and Section 3.2.

As for correlations between primes, namely the HL conjecture and Goldbach’s conjecture, it
turns out that the approach of exploiting Galois theory together with Chebotarev-type density
theorems works well. The additional elements that are needed here are several field arithmetic
arguments and the study of the discriminants of certain field extensions. In [5], we calculate an
asymptotic formula for the number of simultaneous prime polynomial values of several linear
functions in short intervals. This asymptotic formula generalizes some of the above problems
and moreover, it resolves these problems in the setting of short intervals. In [4], we continue
the study of correlations between primes in short intervals in the setting of smooth projective
curves defined over finite fields. Our result gives an asymptotic formula for the desired density.
We briefly review these in Sections 2.4 and 2.5, and at length in Section 3.3 and Section 3.4.

A question similar in nature arises from Landau’s theorem on the density of integers which
are sums of two square integers. In [6], we formulate a function field analogue of this theorem
in short intervals, and show that the desired density still holds. A short description of this
project is given in Section 2.6, and a detailed one in Section 3.5.

Another similarity between Z and Fq[t] appears when considering problems in Diophantine
approximations. Here, as before, there is a straightforward translation between the two settings.
Approximating a real number by an integer translates to approximating a Laurent polynomial in
Fq((1t )) by a polynomial in Fq[t]. In [9], we address a problem in inhomogeneous Diophantine
approximation in the function field setting, to attain Hausdorff dimension results and to give an
explicit Cassels’ constant to this problem. This work is described briefly in Section 2.7, and at
length in Section 3.6.

2. SHORT DESCRIPTION OF MY WORK

2.1. Integers vs Polynomial rings. Before we state our previous work, it might be useful to
briefly recall some of the analogies between the integers and the polynomial ring Fq[t] that are
used throughout. We summarize these below.

(1)

ZZZ ring of polynomials Fq[t]Fq[t]Fq[t]

|x| |f | def= qdeg f

(0, x] M(k, q) def= {h ∈ Fq[t] : h is monic and degh = k}

x = #(0, x] qk = #M(k, q)

log x k = logq q
k

prime number prime polynomial def= monic and irreducible polynomial

2.2. Primes in short intervals and in arithmetic progressions. In [7], we used a new ap-
proach in solving the questions of primes polynomials in short intervals and in arithmetic pro-
gressions with large modulus. Both of these are still open questions in the classical setting.
This approach involves computations of Galois groups as well as using explicit Chebotarev
density theorems. Explicitly, in [21, p. 7] Granville conjectures
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Conjecture 2.1. For a fixed ε with 0 < ε < 1

(2) π(I(x, ε)) ∼ #I(x, ε)

log x
.

Here, π is the prime counting function and I(x, ε) def=(x − xε, x + xε) is a short interval.
Heath-Brown [25], improving Huxley [28], proves Conjecture 2.1 unconditionally for 7

12
< ε.

However, the conjecture in full generality is still open. Using Table (1), a short interval I =
I(f0, ε) around a polynomial f0 ∈ Fq[t] with 0 < ε < 1 fixed, is defined as

(3) I(f0, ε)
def={f ∈ Fq[t] : |f − f0| ≤ |f0|ε} = f0 + P≤bεdegf0c.

For the prime polynomial counting function πq(I(f0, ε)), we prove

Theorem 2.1. [7, Theorem 2.3] Let k be a positive integer and 3
k
≤ ε < 1. Then the asymptotic

formula

(4) πq(I(f0, ε)) =
#I(f0, ε)

k

(
1 +Ok(q

−1/2)
)

holds uniformly for all prime powers q, monic polynomials f0 ∈ Fq[t] of degree k and short
intervals I(f0, ε).

Remark 2.2. Let us mention that in [7] we prove much more;
• We fully characterize the cases where Theorem 2.1 holds or fails for 0 < ε < 3

k
.

• We prove a result on the density of primes in an arithmetic progressions with large
modulus [7, Theorem 2.5].
• We establish results that deal with general factorization types [7, Proposition 3.1].

In order to make this document short and clear, we chose not to bring the additional results.

2.3. Primes in short intervals on curves of higher genus. From a geometric point of view,
polynomials are effective zero-cycles on the affine line. This leads one to ask: Can the analogy
between integers and polynomials be extended to zero-cycles on more general varieties? In [8],
we consider smooth projective geometrically irreducible curves of arbitrary genus defined over
a finite field. We introduce a generalized definition of a short interval on curves, and show that
the expected density of primes in such intervals hold. More precisely, we define

Definition 2.2. Let E = m1p1 + · · ·+msps be an effective divisor on C, and let f0 be a regular
function on the complement of E. The interval (of size E around f0) is the set

(5)
I(f0, E) def=

{
regular functions h on C\supp(E) such

that νpi(h− f0) ≥ −mi for all 1 ≤ i ≤ s

}
= f0 +H0

(
C,O(E)

)
,

The interval I(f0, E) is a short interval if the order of the pole of f0 at each pi is strictly greater
than mi.

We prove

Theorem 2.3. [8, Theorem A.] Let C be a curve of genus g over Fq as above, and let k > 0 be
an integer. Let I(f0, E) be a short interval. Assume in addition that E is sufficiently positive.
Then

(6) πC
(
I(f0, E)

)
=

#I(f0, E)

k

(
1 +Ok(q

−1/2)
)
.

Furthermore, the asymptotic formula (6) is uniform inE and f0. Here, k def= total order of poles of f0 on C
and πC

(
I(f0, E)

)
is the principal prime ideal counting function.
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Remark 2.3. We note that
• The conditions on E being sufficiently positive are fully explained in [8].
• We present analogous conjectures to the Theorem 2.3 for general number fields [8,

Section 1.3].
• We prove a stronger result that deal with other factorization types [8, Proposition 5.1.4].

2.4. Prime polynomial values of linear functions in short intervals. The quantitative Gold-
bach conjecture and the Hardy-Littlewood (HL) n-tuple conjecture are long standing, exten-
sively studied, unresolved conjectures in number theory. A crucial observation is that the two
problems are specific cases of counting the number of simultaneous prime values of linear func-
tions. In other words, consider n distinct primitive functions Li(X) = ai+ biX with ai, bi ∈ Z.
Write L = (L1, ..., Ln) and let πL(I(x, ε)) be the corresponding prime counting function in the
interval I(x, ε). As in the heuristic derivation of the HL conjecture from the PNT, one expects

Conjecture 2.4.

(7) πL(I(x, ε)) ∼ S(L1, . . . , Ln)
#I(x, ε)∏n

i=1 log(Li(x))
as x→∞

where S(L1, . . . , Ln) is a positive constant, and under some restrictions on ai, bi.

Note that if L1(x) = x and L2(x) = a−x, then Conjecture 2.4 imply a quantitative Goldbach
conjecture, and if Li(X) = x + ai retrieve the HL n-tuple conjecture, both in short intervals.
The Polynomial Goldbach problem and the HL problem were both settled by Pollack and Ben-
der [13] and independently by Bary-Soroker [10], all in the large q limit. In [5], we prove
an analogue of Conjecture 2.4; For a primitive linear function L(X) = f(t) + g(t)X with
f, g ∈ Fq[t] and g 6= 0, the height of L is h(L) def= max{deg(f), deg(g)}. Let πq,L(I(f0, ε)) be
the corresponding prime counting function. We prove

Theorem 2.4. [5, Theorem 1.1] Let 0 < B and 0 < ε < 1 be fixed real numbers. Then the
asymptotic formula

πq,L(I(f0, ε)) =
#I(f0, ε)∏n

i=1 deg(Li(f0))

(
1 +OB(q−1/2)

)
holds uniformly for all odd prime powers q, 1 ≤ n ≤ B, distinct primitive linear functions
L1(X), . . . , Ln(X) defined over Fq[t] each of height at most B, and monic f0 ∈ Fq[t] of degree
in the interval 2

ε
≤ degf0 ≤ B.

2.5. Correlation between primes on curves. As in the Section 2.3, one may ask similar
question about the correlation of primes in the setting of curves over a finite field. For a
smooth projective geometrically irreducible curve C of genus g over a finite field Fq, we let
E = m1p1 + · · · + msps be an effective divisor on C. Let σ def=(σ1, ..., σn) be an n-tuple of
distinct rational functions on C, regular on C\supp (E). In [4], we prove

Theorem 2.5. [4, Theorem A] Fix an integer B > n. If charFq 6= 2 and E ≥ 3E0 for some
effective divisor E0 on C with degE0 ≥ 2g + 1, then the asymptotic formula

πC,σ
(
I(f0, E)

)
=

#I(f0, E)∏n
i=1 deg div(f0 + σi)|C\E

(
1 +OB

(
q−1/2

))
holds uniformly for all E and f0, σ1, . . . , σn as above satisfying deg

(
div(f0 + σi)

∣∣
E

)
< B, and

as q → ∞ an odd prime power. Here, πC,σ
(
I(f0, E)

)
is the natural principal prime counting

function.
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2.6. Sum of squares in short intervals. In this project we prove an asymptotic density for
the number of polynomials that can be represented as a sum of two squares in short intervals.
An integer n ∈ Z is representable as a sum of two squares, in short representable if there are
a, b ∈ Z such that n = a2 + b2. Equivalently, an integer is representable if and only if it is a
norm of an element of the Gaussian integers Z[i]. A famous theorem of Landau [36], asserts
that the density of representable integers up to x is K√

log x
, where K is the Landau-Ramanujan

constant. The problem of estimating this density in intervals I(x,Φ(x)) def=(x−Φ(x), x+Φ(x))
has a long history. There are many results [20, 19, 26, 23, 43] giving correct upper and lower
bounds in an almost everywhere sense. However, for Φ(x) ∼ (log x)A, A > 1

2
, Balog and

Wooley [3] show that the expected density fails. Using methods of Ingham, Montgomery and
Huxley it can be confirmed that the density of representable elements in an interval I(x, ε) with
ε > 7

12
is #I(x, ε) · K√

log x
as expected (see [27]). In [6], we resolve a function field analogue

of the above. Consider the ring Fq[
√
−t] as analogous of Z[i]. A polynomial f ∈ Fq[t] is

representable if it is a norm of an element of Fq[
√
−t]. We extend the work in [11], and prove

Theorem 2.6. [6, Theorem ] For odd q, k > 2, 1 > ε ≥ 2
k
, and f0 ∈ Fq[t] monic of degree k

(8) #{f ∈ I(f0, ε) : f is representable } = #I(f0, ε)
( 1

4k

(
2k

k

)
+Ok(q

−1/2)
)

where the implied constant depends only on k. For 0 < ε < 2
k
, (28) no longer holds.

2.7. Diophantine approximations in function fields. A main topic in Diophantine approxi-
mation deals with the inhomogeneous approximation of a real number. In this project we prove
a function field analogue of this problem. Function fields analogues of Diophantine approxima-
tion have been studied since the works of Artin [1] and Mahler [39]. Recently, this subject has
regained interest, parallel to a significant progress in the real case, see for example [32, 33, 48].
In [9], we prove Hausdorff dimension results for exceptional sets connected to inhomogeneous
Diophantine approximation and determine explicitly Cassels’ constant, both in the function
fields setting. In the (classical) real case, similar Hausdorff dimension results have also been
proved. However, only estimates have been obtained for Cassels’ constant. We prove

Theorem 2.7. [9, Theorem 3.5] For every θ ∈ Fq
((

1
t

))
, dim(BAθ) = 1.

Theorem 2.8. [9, Theorem 3.9] Cassels’ constant is c = q−2.

Remark 2.5. We remark that in [9] we prove more. In fact, we prove the above theorems in
higher dimensions [Theorem ] and for general weights [Theorem ].

3. PREVIOUS WORK

3.1. Primes in short intervals and in arithmetic progressions. One classical subject in num-
ber theory is counting the number of primes, for example in short intervals and in arithmetic
progressions. Keeping in mind the Prime Number Theorem (PNT), one may expect that a real
interval I = I(x,Φ(x)) = (x − Φ(x), x + Φ(x)] of size 2Φ(x) starting at a large x contains
about 2Φ(x)/ log x primes. More precisely, if we let π(x) be the prime counting function
(9)

π(x) def= #{2 < p ≤ x : p is a prime number};

π(I(x,Φ(x))) def= #{p ∈ I(x,Φ(x)) : p is a prime number} = π(x+ Φ(x))− π(x− Φ(x)).

Then one expects that

(10) π(I) ∼
∫
I

dt

log t
∼ |I|

log x
.
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The PNT implies that (10) holds for Φ(x) ∼ cx, for any fixed 0 < c < 1. Under the Rie-
mann Hypothesis, (10) holds for Φ(x) ∼

√
x log x. Concerning smaller powers of x Granville

conjectures [21, p. 7]

Conjecture 3.1. If Φ(x) > xε with 0 < ε < 1 then (10) holds.

Heath-Brown [25], improving Huxley [28], proves Conjecture 3.1 unconditionally for 7
12
<

ε. We note that for extremely short intervals, (10) fails uniformly [44], but may hold for almost
all x, see [49] and the survey [22, Section 4]. The rest of this document therefore refers to an
interval of the form I = I(x, ε) = (x− xε, x+ xε] as a short interval.

In a paper published in Duke [7], together with my collaborators, I prove an analogue of
Conjecture 3.1 in function fields. Using Table (??), a short interval I = I(f0, ε) around a
polynomial f0 ∈ Fq[t] with 0 < ε < 1 fixed, is defined as

(11) I(f0, ε)
def={f ∈ Fq[t] : |f − f0| ≤ |f0|ε} = f0 + P≤bεdegf0c.

Here, P≤bεdegf0c is the space of polynomials of degree up to bεdegf0c. The prime counting
function is then

(12)
πq(k) def= #{h ∈ Fq[t] : h is a prime polynomial with degh = k};

πq(I(f0, ε))
def= #{h ∈ I(f0, ε) : h is a prime polynomial}.

We prove

Theorem 3.1. [7, Theorem 2.3] Let k be a positive integer and 3
k
≤ ε < 1. Then the asymptotic

formula

(13) πq(I(f0, ε)) =
#I(f0, ε)

k

(
1 +Ok(q

−1/2)
)

holds uniformly for all prime powers q, monic polynomials f0 ∈ Fq[t] of degree k, and short
intervals I(f0, ε).

Remark 3.2. Let us mention that in [7] we fully characterize the cases where Theorem 3.1
holds or fails for 0 < ε < 3/k. In order to make this document short and clear, we chose not to
bring these cases here.

For primes in arithmetic progressions with large modulus, we obtain a similar result

Theorem 3.2. [7, Theorem 2.5] Let k be a fixed integer and 3
k
≤ δ ≤ 1. Consider the counting

function

πq(k;D, f) def={h ≡ f( mod D) : h is prime, and degh = k}.

Then the asymptotic formula

(14) πq(k;D, f) =
πq(k)

φ(D)

(
1 +Ok(q

−1/2)
)

holds uniformly for all prime powers q and relatively prime f,D ∈ Fq[t] satisfying |D| ≤
qdegf(1−δ0). Here, φ(D) is the Euler totient function.

Remark 3.3. We remark that in order to establish Theorems 3.1 and 3.2, we prove results
which are stronger in the sense that they deal with general factorization types. Hence, they can
be applied to other functions as well, like the `-th divisor function.
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3.2. Primes in short intervals on curves of higher genus. Recalling that the polynomial ring
Fq[t] may be viewed as the ring of rational functions on P1 regular away from∞, and in light
of Theorem 3.1, a natural question asks whether similar estimates of the density of primes in
short intervals hold for arbitrary curves over a finite field. From the perspective of curves over
finite fields, the analogue of the PPT is (see [47, Theorem 5.12])

(15) πC(k) =
qk

k

(
1 +O(q−k/2)

)
.

WhereC is a smooth projective geometrically irreducible curve over Fq, and the prime counting
function is

πC(k) = #{P a prime divisor of C : deg(P ) = k}.

Another perspective one might take comes from Landau’s Prime Ideal Theorem (PIT) [35]
and a Principal Prime Ideal Theorem (PPIT)[42, Section 7.2] for number fields. Since our work
concerns mainly the principal case, we provide here only the formulation of PPIT. For K an
algebraic number field of degree n over Q with class number hK , we have

(16)
πK,prin(x) def= #{principal prime ideals (a) ⊂ OK : 2 < NK(a) ≤ x}

∼ 1
hK
· x
log x

as x→∞.

As for short intervals in a general number field K, one may conjecture two possible ana-
logues of Conjecture 3.1

Conjecture 3.4. Let S = {infinite places of K}. There exists some constant c such that for
each real vector εS = (εp)p∈S in (0, 1)S ⊂ RS , the count

πK,prin
(
I(b, εS)

)
= #

{
a ∈ OK : |a− b|p ≤ |b|εpp for each p ∈ S, and (a) ⊂ OK is prime

}
satisfies the asymptotic formula

(17) πK,prin
(
I(b, εS)

)
∼ c·#{a ∈ OK : |a− b|p ≤ |b|εpp for all p ∈ S}

logNK(b)
as NK(b)→∞.

Conjecture 3.5. There exists some constant c such that for each 0 < ε < 1, the count

πK,prin
(
I(x, ε)

)
= #

{
principal prime ideals (a) ⊂ OK : x− xε < NK(a) ≤ x+ xε

}
.

satisfies the asymptotic formula

(18) πK,prin
(
I(x, ε)

)
∼ c · #I(x, ε)

log x
= c · 2 xε

log x
as x→∞.

Balog and Ono [2], using formulas for the prime ideal counting function due to Lagarias and
Odlyzko [34] and zero density estimates for Dedekind zeta-functions due to Heath-Brown [24]
and Mitsui [40], show that Conjecture (3.5) holds for 1 − 1

n
< ε ≤ 1. Here one may take

n = 8/3 if [K : Q] = 2, and n = [K : Q] if the degree of the extension is at least 3.
For a smooth projective geometrically irreducible curve C of genus g, defined over Fq, the

natural analogue of the short interval implicit in Conjecture 3.4 is the following set

Definition 3.3. Let E = m1p1 + · · ·+msps be an effective divisor on C, and let f0 be a regular
function on the complement of E. The interval (of size E around f0) is the set

(19)
I(f0, E) def=

{
regular functions h on C\supp(E) such

that νpi(h− f0) ≥ −mi for all 1 ≤ i ≤ s

}
= f0 +H0

(
C,O(E)

)
,
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where H0
(
C,O(E)

)
is the space of regular functions on C\{p1, . . . , ps} with a pole of order

at most mi at each point pi, for 1 ≤ i ≤ s.
The interval I(f0, E) is a short interval if the order of the pole of f0 at each pi is strictly

greater than mi.

The value that serves as our prime count in any short interval I(f0, E) is

(20) πC(I(f0, E)) def= #

h ∈ I(f0, E) such that h generates a
prime ideal in the ring of regular

functions on C\supp (E)

 .

In [8] we generalize Theorem 3.1 and prove an analogue of Conjecture 3.4

Theorem 3.4. [8, Theorem A.] Let C be a smooth projective geometrically irreducible
curve of genus g over Fq, and let k > 0 be an integer. Let E be an effective divisor on
C, f0 a regular function on C\supp (E), and I(f0, E) a short interval. Assume in addi-
tion that E ≥ 3E0 for some effective divisor E0 on C with degE0 ≥ 2g + 1 and that
degE < k def= total order of poles of f0 on C. Then

(21) πC
(
I(f0, E)

)
=

#I(f0, E)

k

(
1 +Ok(q

−1/2)
)
.

Furthermore, the asymptotic formula (21) is uniform in E and f0, in the sense that the rate of
convergence is independent of the choice of E and f0.

Remark 3.6. To establish Theorem 3.4, we prove a result that is stronger in two respects.
First, for any partition type of the set {1, 2, . . . , k}, we provide an asymptotic count of rational
functions h ∈ I(f0, E) whose associated principal divisor on C\E has that partition type.
Second, our count holds for a class of effective divisors E satisfying positivity requirements
more relaxed than the ones in Theorem 3.4.

3.3. Prime polynomial values of linear functions in short intervals. The quantitative Gold-
bach conjecture and the Hardy-Littlewood (HL) n-tuple conjecture are long standing, exten-
sively studied, unresolved conjectures in number theory. A crucial observation is that the two
problems, as well as the problems on the number of primes in short intervals and on the num-
ber of primes in arithmetic progressions, have a similar structure: they are all specific cases of
counting the number of prime values of linear functions in short intervals. Let us consider the
general setting: Let Li = biX + ai, i = 1, . . . , n be distinct primitive linear functions with
ai, bi ∈ Z (Li’s are primitive in the sense that gcd(ai, bi) = 1) and write L = (L1, ..., Ln). The
corresponding prime counting function is

(22) πL(I(x, ε)) def= #{h ∈ I(x, ε) : each Li(h) is a prime}.

As in the heuristic derivation of the HL conjecture from the PNT, one may expect that

Conjecture 3.7.

(23) πL(I(x, ε)) ∼ S(L1, . . . , Ln)
#I(x, ε)∏n

i=1 log(Li(x))
as x→∞

where S(L1, . . . , Ln) is a positive constant, and 0 < ai < bi, b
δ
i < x or bi < 0, |bi|1+δ < ai

and |bi|xα < ai < |bi|xβ for 1 < α < β and for all i.

Note that if L1(x) = x and L2(x) = a − x, then (23) would imply a quantitative Goldbach
conjecture (for all sufficiently large even a ∈ Z) and if Li(X) = x + ai, we retrieve the HL
n-tuple conjecture.
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In the function field setting, the Polynomial Goldbach problem and the HL problem were
both settled by Pollack and Bender in [13] and independently by Bary-Soroker in [10], all in
the large q limit.

In [5], we prove the function field analogue of the generalized conjecture (23) in the large q
limit. For a primitive linear function L(X) = f(t) + g(t) ·X with f, g ∈ Fq[t] and g 6= 0, the
height of L is height(L) def= max{deg(f), deg(g)}. By abuse of notation, we write πq,L(I(f0, ε))
as the analogue of the counting function (22).

Theorem 3.5. [5, Theorem 1.1] Let 0 < B and 0 < ε < 1 be fixed real numbers. Then the
asymptotic formula

πq,L(I(f0, ε)) =
#I(f0, ε)∏n

i=1 deg(Li(f0))

(
1 +OB(q−1/2)

)
holds uniformly for all odd prime powers q, 1 ≤ n ≤ B, distinct primitive linear functions
L1(X), . . . , Ln(X) defined over Fq[t] each of height at most B, and monic f0 ∈ Fq[t] of degree
in the interval 2

ε
≤ degf0 ≤ B.

3.4. Correlation between primes on curves. As in the Section 3.2, one may ask similar ques-
tion about the correlation of primes in the setting of smooth projective curves over a finite
field. For a smooth projective geometrically irreducible curve C over a finite field Fq, we let
E = m1p1 + · · · + msps be an effective divisor on C. Let σ def=(σ1, ..., σn) be an n-tuple of ra-
tional functions σi on C, regular on C\supp (E). The corresponding prime counting function
on a short interval I(f0, E) (as in Definition 3.3) is now

(24) πC,σ(I(f0, E)) def= #

{
h ∈ I(f0, E) such that h+ σ1, ..., h+ σn generate prime

ideals in the ring of regular functions on C\supp (E)

}
.

In [4], we prove the following analogue of Theorem 3.5, for f0, σ1, ..., σn distinct regular func-
tions on C\supp (E) satisfying −νp(f0) > mp and νp(f0) 6= νp(σi) for each 1 ≤ i ≤ n.

Theorem 3.6. Fix an integer B > n. If charFq 6= 2 and E ≥ 3E0 for some effective divisor
E0 on C with degE0 ≥ 2g + 1, then the asymptotic formula

πC,σ
(
I(f0, E)

)
=

#I(f0, E)∏n
i=1 deg div(f0 + σi)|C\E

(
1 +OB

(
q−1/2

))
holds uniformly for all E and f0, σ1, . . . , σn as above satisfying deg

(
div(f0 + σi)

∣∣
E

)
< B, and

as q →∞ an odd prime power.

3.5. Sum of squares in short intervals. In this project we prove an asymptotic density for the
number of polynomials over a finite field that can be represented as a sum of two squares.

We say that an integer n is representable as sum of two squares, in short representable, if
there exist a, b ∈ Z such that n = a2 + b2. One may observe that an integer is representable
if and only if it is a norm of an element in the Gaussian integers Z[i]. A famous theorem
of Landau [36], asserts that the asymptotic density of representable integers n in the interval
I = [1, x] is K√

log x
, where K is the Landau-Ramanujan constant. More precisely, let

(25) b(n) def=

{
1, n is representable
0, otherwise.

, 〈b(n)〉n∈I
def=

1

|I|
∑
n∈I

b(n),

here b(n) is the characteristic function of representable integers and 〈b(n)〉n∈I is its mean value
in the interval I .
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Theorem 3.8 (Landau).

(26) 〈b(n)〉n∈I ∼ K
1√

log x
, x→∞.

In view of Theorem 3.8 one would expect that in an interval I = (x − Φ(x), x − Φ(x)] the
same asymptotic density should hold, i.e., the mean value 〈b(n)〉n∈I is approximately K 1√

log x

as x → ∞ and for Φ(x) >
√

log x. The problem of estimating the mean value of b(n) in such
intervals has a long history. When restricting to all x outside a set of asymptotic density 0,
the correct upper and lower bounds are known; See Friedlander [20, 19] and Hooley [27] for
upper bounds; Plaskin [43], Harman [23], and Hooley [27] for lower bounds. However, for
Φ(x) = (log x)A, A > 1

2
Balog and Wooley [3] show a Maier type phenomenon, which implies

that the expected density fails. Thus, a natural restriction is considering Φ(x) = xε with fixed
0 < ε < 1. It is a folklore conjecture that

Conjecture 3.9. For any fixed 0 < ε < 1, let I(x, ε) = (x − xε, x + xε] be a short interval.
Then (26) holds.

Using methods of Ingham, Montgomery and Huxley for primes in short intervals, one can
confirm Conjecture 3.9 for ε > 7

12
unconditionally and for ε > 1

2
assuming the Riemann

Hypothesis, see [26].
In [6], we resolve a function field analogue of the above conjecture in the limit of a large

finite field. Consider the ring Fq[
√
−t] as the analogue of Z[i]. A monic polynomial f ∈ Fq[t]

is representable if it is a norm of an element from Fq[
√
−t]. That is, a monic polynomial

f ∈ Fq[t] is representable if there exist polynomials A,B ∈ Fq[t] such that f = A2 + tB2. For
a monic polynomial f ∈ Fq[t] of degree k we define bq(f) and 〈bq(f)〉f∈I to be the analogues
of (25). Bary-Soroker, Smilansky and Wolf in [11] show an analogue of Theorem 3.8

(27) 〈bq(f)〉f∈I(tk,k−1) =
1

4k

(
2k

k

)
+Ok(q

−1)

where the implied constant depends only on k.
Our main result in this work is a function field analogue of Conjecture 3.9, namely of Lan-

dau’s theorem for short intervals

Theorem 3.10. For odd q, k > 2, 1 > ε ≥ 2
k
, and f0 ∈ Fq[t] monic of degree k, we have

(28) 〈bq(f)〉I(f0,ε) =
1

4k

(
2k

k

)
+Ok(q

−1/2)

where the implied constant depends only on k. For 0 < ε < 2
k
, (28) no longer holds.

3.6. Diophantine approximations in function fields. A main topic in Diophantine approxi-
mation deals with the inhomogeneous approximation of a real number. In this project we prove
a function field analogue of this problem.

Function fields analogues of Diophantine approximation have been studied since the works
of Artin [1] and Mahler [39]. Recently, this subject has regained interest, parallel to a significant
progress in the real case, see for example [32, 33, 48]. In [9], we prove Hausdorff dimension
results for exceptional sets connected to inhomogeneous Diophantine approximation and deter-
mine explicitly Cassels’ constant, both in the function fields setting. In the (classical) real case,
similar Hausdorff dimension results have also been proved. However, only estimates have been
obtained for Cassels’ constant. Our methods of proof use connections to linear algebra and
tree-like collections for bounding the Hausdorff dimension and are much inspired by a paper
of Davenport and Lewis [17].
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For a real number θ, denote 〈θ〉 def= θ −
⌊
θ + 1

2

⌋
and let |θ| denote the absolute value of θ. In

these notation, |〈θ〉| is the distance from θ to the integers. Given two real numbers θ and γ
define the approximation constant of θ with respect to γ and the badly approximating set of θ
as

(29) c(θ, γ) def= inf
n6=0
|n| · |〈nθ − γ〉| BAθ

def= {γ ∈ R : c (θ, γ) > 0} .

We summarize two known results

Theorem 3.7. The set BAθ satisfies
(1) [Berend and William, [14]] For every θ ∈ R \ Q, the set BAθ has zero Lebesgue

measure.
(2) [Tseng, [50]] For every θ ∈ R, the set BAθ has Hausdorff dimension 1.

In particular, Theorem 3.7(2) states that BAθ is not empty. This leads to the definitions

(30) c(θ) def= sup
γ
c(θ, γ) c def= inf

θ
c(θ).

The constant c is known as the Cassels’ constant. Khinchine [31] proved that c > 0, and the
problem of finding the exact value of c was posed by Cassels [16, p.86]. According to [41], the
best known estimates of c are 3

32
≤ c ≤ 68

483
. We define the natural function fields analogues of

(29) and (30). For θ, γ ∈ Fq
((

1
t

))
and N ∈ Fq[t] a non-zero polynomial, let

c(θ, γ) def= inf
06=N
|N | · |〈Nθ − γ〉| c(θ) def= sup

γ
c(θ, γ) c def= inf

θ
c(θ)(31)

BAθ
def=

{
γ ∈ Fq

((
1

t

))
: c(θ, γ) > 0

}
.(32)

We prove an analogue of Theorem 3.7(2)

Theorem 3.8. [9, Theorem 3.5] For every θ ∈ Fq
((

1
t

))
, dim (BAθ) = 1.

We determine the Cassels’ constant in the function field setting

Theorem 3.9. [9, Theorem 3.9] Cassels’ constant is c = q−2.

Remark 3.11. We remark that in [9] we prove more than Theorems 3.8 and 3.9. In fact, we
prove those theorems in higher dimensions, namely for (Fq((1t )))

d and for general weights.
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